
Computer Simulation of Magnetic Resonance
Spectra Employing Homotopy

K. E. Gates,*,1 M. Griffin,* G. R. Hanson,† and K. Burrage*

*Department of Mathematics and†Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia

E-mail: keg@maths.eq.edu.au

Received June 25, 1997; revised July 6, 1998

Multidimensional homotopy provides an efficient method for
accurately tracing energy levels and hence transitions in the pres-
ence of energy level anticrossings and looping transitions. Herein
we describe the application and implementation of homotopy to
the analysis of continuous wave electron paramagnetic resonance
spectra. The method can also be applied to electron nuclear double
resonance, electron spin echo envelope modulation, solid-state
nuclear magnetic resonance, and nuclear quadrupole resonance
spectra. © 1998 Academic Press
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INTRODUCTION

Multifrequency electron paramagnetic resonance (EPR)
spectroscopy (1–3) is a powerful tool for characterizing para-
magnetic molecules or centres within molecules that contain
one or more unpaired electrons. EPR spectra are often complex
and are interpreted with the aid of a spin Hamiltonian. For an
isolated paramagnetic centre (A) a general spin Hamiltonian is
(1–3)

*A 5 S z D z S 1 bB z g z S 1 S z A z I

1 I z Q z I 2 gI z ~1 2 s! z B, [1]

where S and I are the electron and nuclear spin operators
respectively,D the zero field splitting tensor,g andA are the
electron Zeeman and hyperfine coupling matrices, respectively,
Q is the quadrupole tensor,g the nuclear gyromagnetic ratio,s
the chemical shift tensor,b the Bohr magneton, andB the
applied magnetic field.

Additional hyperfine, quadrupole, and nuclear Zeeman in-
teractions will be required when superhyperfine splitting is
resolved in the experimental EPR spectrum. When two or more
paramagnetic centres (Ai, i 5 1, . . . , N) interact, the EPR
spectrum is described by a total spin Hamiltonian (*Total)
which is the sum of the individual spin Hamiltonians (*Ai

, Eq.

[1]) for the isolated centres (Ai) and the interaction Hamilto-
nian (*Aij

) which accounts for the isotropic exchange, anti-
symmetric exchange, and the anisotropic spin–spin (dipole–
dipole coupling) interactions between a pair of paramagnetic
centres (2–5),

*Total 5 O
i51

N

*Ai
1 O

i, j51, jÞi

N

*Aij

*Aij
5 JAij

SAi z SAj 1 dAij
SAi 3 SAj 1 SAi z DAij

z SAj. [2]

Computer simulation of the experimental randomly ori-
entated or single crystal EPR spectra from isolated or cou-
pled paramagnetic centres is often the only means available
for accurately extracting the spin Hamiltonian parameters
required for the determination of structural information (2–
8). Computer simulation of randomly orientated EPR spec-
tra is performed in frequency space through the integration
(3, 9)

S~B, nc! 5 O
i50

M O
j5i11

M

CE
p50

p E
p50

p

3 um ij u2f @nc 2 n0~B!, sn#dcosu dw, [3]

where S(B, nc) denotes the spectral intensity,um ij u
2 is the

transition probability,nc the microwave frequency,n0(B) the
resonant frequency,sn the spectral linewidth,f [nc 2 n0(B),
sn] a spectral lineshape function which normally takes the
form of either Gaussian or Lorentzian, andC a constant which
incorporates various experimental parameters. The summation
is performed over all the transitions (i , j ) contributing to the
spectrum and the integration is performed over half of the unit
sphere (for ions possessing triclinic symmetry), a consequence
of time reversal symmetry (1, 3). For paramagnetic centres1 To whom correspondence should be addressed.
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with symmetries higher than triclinic only one or two octants
are required.

Unlike most other spectroscopic techniques (nuclear mag-
netic resonance, infrared, and electronic absorption spectros-
copy) which are frequency swept, EPR is a field-swept tech-
nique. In other words, the resonance condition [hnc 5 Ei(Bres)
2 Ej(Bres); whereEi andEj are the energies (eigenvalues) of
the two spin states (eigenvectors) involved in the transition] is
achieved by sweeping the magnetic field (varyingBres and
henceEi andEj).

The methods used for determiningBres in the computer
simulation of randomly oriented EPR spectra can be broadly
classified into two categories, namely perturbation and matrix
diagonalization methods.

In perturbation methods the energies of the spin states as
a function of the field strength B are obtained from analyti-
cal expressions. This approach is computationally inexpensive
but is limited largely to systems in which a dominant inter-
action exists and all the other interactions can be treated
approximately as perturbations. This approach has been pre-
dominantly used to extract spin Hamiltonian parameters
from EPR spectra of isolated paramagnetic centres which
contain a single unpaired electron (S 5 1

2
) (2, 3, 10–16)

and exchange or dipole–dipole coupled binuclear centres
(SA1

5 SA2
5 1

2
) (2–5).

The second category involves matrix diagonalization and
must be employed for calculating the eigenvalues and eigen-
vectors when perturbation theory breaks down (i.e., when two
or more interactions have comparable energies). While the
eigenvalues are used to calculateBres, the eigenvectors are used
to calculate the transition probabilityum ij u

2 (3).
In theory, this approach is general and can be applied to

any spin system of choice. However, the numerical integra-
tion given in Eq. [3] can be very time-consuming as the
process of searching forBres for a given transition involves
substantial computation and this searching process has to be
repeated for every transition and for every orientation of the
magnetic field. This often involves a very large number
(100,000 or more) of matrix diagonalizations and memory
requirements can be substantial if the spin space becomes
large. Currently the most efficient algorithms for Hermitian
matrix diagonalization are cubic processesO(N3) (whereN
is the order of the matrix) (17). As a consequence computer
simulation programs employing this approach are performed
in field space with symmetric lineshapes with a constant
transition probability across a given resonance. Examples of
computer simulation software which use this approach to
simulate spectra from isolated paramagnetic centres include
QPOW (18), EPR.FOR (19), MAGRES (20, 21), and
MSPEN/MSGRA (22).

The “Sophe” method recently developed by Wang and
Hanson features matrix diagonalization, a segmentation
method employing second order eigenfield perturbation the-
ory allowing Bres to be determined quickly, a new scheme

for partitioning the unit sphere and the extremely efficient
global cubic spline and local linear interpolation schemes
for reducing the number ofu and f orientations (23–25).
While a 26-fold reduction in computational time can be
achieved in the simulation of an orthorhombic Cr(III) EPR
spectrum with Sophe, even larger reductions can be ob-
tained with larger spin systems. The Sophe computer sim-
ulation software package allows the simulation of randomly
orientated powder spectra described by either Eq. [1] or Eqs.
[1] and [2] for all spin systems (i.e.,SA $

1
2

or SAi
$

1
2
, SAj

$
1
2
: i, j 5 1, . . . ,N; j Þ i) (23–25) and can easily be extended

to other types of randomly orientated powder spectra in
magnetic resonance.

In the Sophe method (23, 24), the Bres are calculated by
matrix diagonalization only at a number of selected orien-
tations which constitute the vertices of a given Sophe grid,
(typically 190 orientations/vertices for orthorhombic sym-
metry). For all other orientations (normally in the thou-
sands),Bres and umij u

2 are obtained through the Sophe inter-
polation scheme. Such an approach has been demonstrated
to be highly successful for simulating complicated EPR
spectra (26 –28).

However, all computer simulation programs, including
Sophe, that employ matrix diagonalization, are not capable of
performing the following functions satisfactorily:

(a) Tracing a given transition as a function of orientation in
the presence of energy level crossings and anti-crossings (29).

(b) Tracing of surfaces (Bres as a function of orientation)
which contain looping transitions (29). Looping transitions
are transitions that fold back on themselves in orientational
space.

(c) Performing the simulations in frequency space (9).
(d) Calculation of the transition probability across a reso-

nance.

Thus, although the complete matrix diagonalization ap-
proach is far superior for general systems than perturbation
methods, both methods are incapable of tracing the eigenpairs
from one field position to another nearby position when there
are holes in a transition surface, anti-level crossings, or looping
transitions. Herein we describe the application and implemen-
tation of homotopy to the computer simulation of magnetic
resonance spectra which allows the difficulties described above
to be overcome.

HOMOTOPY

In other fields, the “homotopy” method, also known as the
continuation or embedding method, has been shown to be
efficient and useful for tracing eigenvalues and eigenvectors of
a known diagonalization to an unknown diagonalization
(30, 31). It has also been used to compute the complete eigen-
decomposition of symmetric tridiagonal matrices (30, 31). Ho-
motopy works by constructing a function which connects
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through smooth curves the eigenvalues and eigenvectors of one
matrix to another. A similar method based on nonlinear least
squares was used by Misra and Vasilopoulos (32) to trace the
eigenvalues and hence the resonant field positions in single
crystal EPR spectra.

The homotopy method can be used to trace the eigenval-
ues and eigenvectors (termed an eigenpair) for a given spin
system as a function of orientation and magnetic field.
Consequently, given a fixed microwave quantum (hnc), tran-
sitions between a pair of eigenvectors can also be traced as
a function of orientation and magnetic field, producing a
complete eigensurface of eigenvalues and associated eigen-
vectors. This enables homotopy to uniquely follow the tran-
sition surface in the vicinity of anti-level crossings and
looping transitions. Since the eigenvalues and eigenvectors
are known as a function of orientation and magnetic field,
the simulation of magnetic resonance spectra and in partic-
ular continuous wave EPR spectra can be correctly per-
formed in frequency space.

The initial step in homotopy is the construction of a spin
Hamiltonian matrix (H) based on an appropriate spin Hamil-
tonian (Eq. [1] or Eqs. [1] and [2]). This results in a matrix
function in three variables, the Euler anglesu and f, which
reflect the angular dependence of the transitions, and the mag-
netic fieldB. For ease in further calculations this Hamiltonian
matrix is split into field independentHindepand field dependent
Hdep (u, f, B) components. The eigenvalues (E) and eigen-
vectors (c) at an initial orientation, for example,u 5 f 5 0°,
are calculated from these matrices by solving the eigenvalue
problem (*c 5 Ec).

The second step is to use an appropriate search algorithm to
locate the resonant field positionsBres using the resonance
condition

F 5 DE 5 hnc 5 Ei~u1, f1, Bres! 2 Ej~u1, f1, Bres! [4]

for an initial fixed set of Euler angles and a constant microwave
quantum. The result of this search algorithm is two eigenpairs,
corresponding to each transition, and a resonant field strength
Bres. An example of such a search algorithm is described
below. The probability of observing a transition between this
pair of eigenvectors can be calculated by applying a mathe-
matical formula to the eigenvectors.

The third step is to keep the magnetic field strength constant
and calculate the resonant energy difference between the eig-
envalues based strictly on changes to the Euler angles. In
particular, the energy levels are traced from one fixed position
(u0, f0) to another fixed position (u1, f1) which involves a
change in one or both of the Euler angles. From the theory
developed for the homotopy method we know that for an
energy levelE(u0, f0, B0) with a corresponding eigenvector
c1(u0, f0, B0) (31), the derivative of the eigenvalueEi with
respect to the homotopy variableT is given by

E9i~u0, f0, B0! 5 c i~u0, f0, B0!
T~H~u0, f0, B0!

2 H~u1, f1, B1!)c i~u0, f0, B0!. @5#

This equation is equivalent to the Rayleigh quotient (33) of the
difference of the field dependent Hamiltonian at the two points.
By using this formula and varying onlyu andf we can find an
approximate spatial derivative of the eigenvalue, and thus the
change in spin state due to spatial variations. Having found the
derivatives for the two eigenvalues of interest, we can then
estimate the eigenvalues at the new orientation (u1, f1). With
these estimates of the new eigenvalues we can find the eigen-
vectors by solving the equation

~H~u1, f1, B0! 2 Ei~u1, f1, B0!!c i~u1, f1, B0! 5 0. [6]

We can then get a better estimate of each eigenvalue from
the Rayleigh quotient (33) of the new eigenvector,

E~u1, f1, B0!

5 c i~u1, f1, B0!
TH~u1, f1, B0!c i~u1, f1, B0! [7]

and then calculate a new eigenvector corresponding to this new
eigenvalue. Thus we iterate between estimates of the eigen-
value and the eigenvector until convergence (defined by the
tolerance parameterd1 5 1.0 3 104 3 epsilon3 uEu), or the
maximum number of iterations (n1, typically 5) is exceeded.
Epsilon is defined as the smallest difference between two
double precision numbers and for a Silicon Graphics R5000 O2
workstation with 32 bit libraries equals 2.2204463 10216. If
the maximum number of iterations is exceeded for either
eigenvalue, the total spatial distance is halved, and this step is
repeated.

After having independently traced the two eigenpairs of
interest from one spatial location (u, f) to another, the next
step, step four, is to find the resonant field positions at the new
orientation. This is accomplished by using another variation of
the Homotopy algorithm. From Eqs. [4] and [5] whereB is
varied andu andf are held constant, we can find the derivative
of the functionF at (u1, f1, B0)

F9B 5 E9i~u1, f1, B0! 2 E9j~u1, f1, B0!. [8]

We can now update the correction to the resonant field position
Bres,

DB 5 2F/F9B

B1 5 B0 1 DB. [9]

Using this new value forB we can update the energies,Ei and
Ej with the Rayleigh Quotient method and check the resonance
condition (Eq. [4]). If the condition is not satisfied, we continue
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to take new stepsDB until Eq. [4] is satisfied, or until the
maximum number of steps (n2, typically 7) is exceeded. Upon
convergence we return to step three and take a new spatial step.
In general, this stepDB is confined to be within some tolerance
range (d2 5 1.0 3 106 3 epsilon5 2.2204463 1026), if this
is not achieved, or if too many steps are required, then the
algorithm goes back to step three halving the total spatial
distance. This method will allow the calculation of the transi-
tion probability (from the eigenvectors) across a given transi-
tion line and in turn enables simulations to be performed in
frequency space.

The implementation of homotopy to the analysis of ran-
domly orientated EPR spectra is described below.

Set up Hamiltonian matrix defined by Eqs. [1] and [2] (Step 1)
calculate the eigenvectors and eigenvalues atu0,f0 by solv-

ing *c 5 Ec
Locate resonant field positions Bres (Step 2)
Trace Eigenpath fromu0,f0 to u1,f1 (Step 3)

Set the toleranced1, the maximum iteration number, n1, Du,
and Df

u 5 u0 1 Du
f 5 f0 1 Df
Do

Use E(u0,f0,B0) and E9(u0,f0,B0) to predict E(u,f,B0) for
the eigenvectorsci and cj.

Call Rayleigh Quotient Iteration (H, Ei(u, f, B0), ci(u, f,
B0), n1, d1)

Call Rayleigh Quotient Iteration (H, Ej(u, f, B0), cj(u, f,
B0), n1, d1)

If Rayleigh Quotient Iteration converged
u1 5 u
f1 5 f
Exit

Else
Du 5 Du/2
u 5 u0 1 Du
Df 5 Df/2
f 5 f0 1 Df

End if
While Rayleigh Quotient has not converged

End
Find the resonant field position Bres (Step 4)

Set the toleranced2 and the maximum iteration number, n2.
B 5 B0

Do i
FB 5 Ei(u1, f1, B) 2 Ej(u1, f1, B)
F9B 5 E9i(u1, f1, B) 2 E9j(u1, f1, B)
DB 5 2FB/F9B
B 5 B 1 DB
Call Rayleigh Quotient Iteration (H, Ei(u1, f1, B)ci(u1, f1,

B), n2, d2)
Call Rayleigh Quotient iteration (H, Ej(u1, f1, B)cj(u1, f1,

B), n2, d2)

If Rayleigh Quotient Iteration converged andd2 , n2

If FB 2 hnc , d2

Bres 5 B
Exit

End if
Else

Du 5 Du/2
u 5 u0 1 Du
Df 5 Df/2
f 5 f0 1 Df
Go to Step 3

End if
End do

End

The Rayleigh quotient iteration method (33) is used to determine
both the eigenvalue and the eigenvector of a symmetric matrix.

Rayleigh Quotient Iteration(H, E,c, n, d)
c0 5 c/\c\
m0 5 E
For i 5 0, . . . , n 2 1

yi 5 (H 2 miI)
21ci

ci11 5 yi / \yi\
mi11 5 ci11

T Hci11

If (\mi11 2 mi\ , d) then
l 5 mi11

c 5 ci11

Return success
Endif

End for loop

TABLE 1
Complexity Analyses for Matrix Diagonalization and Homotopy

Matrix diagonalization

Procedure Computation time

Tri-diagonalizeH matrix. 2/3N3

DiagonalizeH matrix with an iterative QR method.a 8–10N3

Repeat diagonalization 200 times for each
orientation (u, f).

;2000N3

Total computation time form2/2 orientations. ;2000N3 m2/2

Homotopy

Tri-diagonalizeH matrix. 2/3N3

Rayleigh Quotient Iteration.b 15–20N
Find C from the originalH matrix. 2N2

Repeat;4 times to trace transition surface from one
orientation to another.

;8/3N3

This calculation is repeated ford allowed transitions. ;8/3d N3

Total computation time form2/2 angular
orientations.

;8/3d N3 m2/2

a Determine allE, C of tri-diagonalH matrix.
b Using the tri-diagonalH matrix.
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Return failure
End

Application of homotopy to a continuously varying transi-
tion surface (for example, Fig. 2) is fairly straight forward.
Given a single point on the surface, a method could just
produce a line of eigenpair points along theu axis, and then
from every point on the line sweep out along thef axis.
However, such an algorithm will not find the complete surface
if looping transitions are present (Fig. 3). Using this funda-
mental method, there are three possible cases when the surface
will not be completed. The first two cases involve the compar-
ison between two adjacent lines (i.e., two lines along thef
axis). If one line turns and the other doesn’t, or if there is a
great difference inB values between adjacent points, then part
of the surface could be missing, for example, Fig. 4b. The third
case is a surface that has a fairly complicated boundary and
does not exist for the entire spatial dimension field.

The following modifications to homotopy described herein
provide a solution to these problems. In step three, homotopy
attempts to trace the eigenvalues from one angular position to
another. If homotopy is unsuccessful, then the spatial distance is
halved and the step is repeated. If the spatial distance falls below
a certain level, then there are two possibilities—either the edge of
the surface has been reached or a turn has been found. To
investigate the possibility of a turn, homotopy is used to trace the
eigenvalues in the reverse spatial direction. There is then the
problem of whether a turn is being followed, or whether the
previously found eigenpairs are being rediscovered. To ensure
that a turn is indeed being followed the adjustments ofB are
checked. In general whenB is adjusted,DB is confined to be
within plus or minus a given tolerance, otherwise an error is
produced. In the vicinity of a possible turn,DB is restricted
further. If B was increasing prior to the possible turn, thenB is
confined to increase after the turn. IfB was decreasing before the

FIG. 1. An energy level diagram for a high-spin Fe(III) complex (D 5 0.1 cm21, E/D 5 0.25, g 5 2.0, n 5 9.0 GHz) atu 5 0° andf 5 0°. Energy
level numbers one through six correspond to levels in increasing energy.
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turn, then it will decrease after the turn. If homotopy continues to
find eigenvalues with these restrictions imposed then a turn oc-
curred, otherwise the edge of the surface was found.

A comparison of the complexity analyses for matrix diagonaliza-
tion (;1000N3 m2) and homotopy (;4/3d N3 m2), Table 1, reveals
that providing the number of transitions (d) is less than 75, homotopy
will be computationally more efficient than matrix diagonalization.

APPLICATION OF HOMOTOPY TO AN S 5 5
2

SPIN SYSTEM

Homotopy has been tested for a high-spin Fe(III) system
S 5 5

2
(D 5 0.1 cm21, E/D 5 0.25,g 5 2.0) for which the

second order fine structure spin Hamiltonian is

* 5 gbB z S 1 DFSz
2 2

1

3
S~S1 1!G 1 E~Sx

2 2 Sy
2!. @10#

With the microwave quantum (n 5 9.0 GHz) set to be slightly
smaller than the zero-field splittings, multiple transitions can oc-
cur between a given pair of energy levels (Fig. 1). For example,
between levels 2 and 4 (numbered in increasing energy), three
transitions atBres 5 35.25, 1892.0, and 2355.0 mT are detected.

The power of homotopy in comparison to matrix diagonal-
ization is clearly demonstrated in Figs. 2, 3, and 4 which
compare transition surfaces from the two methods for partic-
ular transitions arising from anS 5 5

2
spin system. Figure 2

shows the transition surfaces between levels 5 and 6. The
homotopy surface (Fig. 2a) shows exactly the same structure as
calculated by matrix diagonalization (Fig. 2b). This transition
surface varies continuously as a function of the Euler angles
and the magnetic fieldB.

Table 2 gives the results of comparisons between homotopy
and the matrix diagonalization, where the following informa-
tion is given in the columns:

(1) the transition levels,

FIG. 2. Transition surface between levels 5 and 6 as a function ofu, f, and
B for a high-spin Fe(III) complex (D 5 0.1 cm21, E/D 5 0.25,g 5 2.0,n 5 9.0
GHz). Calculated using (a) homotopy and (b) matrix diagonalization, Sophe.

FIG. 3. Transition surface between levels 3 and 5 as a function ofu, f,
andB for a high-spin Fe(III) complex (D 5 0.1 cm21, E/D 5 0.25,g 5 2.0,
n 5 9.0 GHz). Calculated using (a) homotopy and (b) matrix diagonalization,
Sohpe.
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(2) the relative difference (RA) between the Sophe points
calculated using the two methods,

RA5 1/n*
O uBMatrix Diagonalization2 BHomotopyu

BHomotopy
, [11]

(3) the total number of Sophe points computed,
(4) the number of erroneous data points where the magnetic

field value for matrix diagonalization and homotopy do not
agree, or where matrix diagonalization found an erroneousB
value, and

(5) the number of multiple-valued Sophe points calculated
by homotopy for which the matrix diagonalization routine may
have calculated multiple points but Sophe was unable to com-
plete the surface. Consequently only the lowest valued point
has been reported.

Clearly, homotopy reproduces the surface obtained by ma-
trix diagonalization between levels 5 and 6 as the relative error

between the two methods is very small 4.1043343 1025. The
transition surface from level 3 to level 5 shown in Fig. 3 is an
example of a looping transition in which the transition surface
folds back on itself. While the surface is fully defined by
homotopy (Fig. 3a), the surface calculated by matrix diagonal-
ization is incomplete and erroneous since there are no transi-
tions between levels 3 and 5 whenu . 40° (Fig. 3b). In Fig. 4
an anti-level crossing between levels 2 and 4 is graphed.
Homotopy (Fig. 4a) resolves the complete structure while
matrix diagonalization completes only the mostly continuous
lower transition (Fig. 4b). In this case matrix diagonalization
may have found multiple points. Matrix diagonalization may
have discarded some points in completing the surface, as it is
unable to make a connection between the multivalued points.
Note that the unmatched homotopy points indicate structure
not revealed with matrix diagonalization, while the points
where matrix diagonalization and homotopy do not agree in-
dicate erroneous points calculated by matrix diagonalization.

Randomly orientated spectra calculated with homotopy and
matrix diagonalization are shown in Figs. 5a and 5b, respec-
tively. Clearly there is excellent agreement between the two
methods for this spin system. For the high-spin Fe(III) system
described above withN 5 100 (the number ofu orientations
in the Sophe grid) and 100 field intervals for matrix diagonal-
ization, matrix diagonalization took 535.661 s while homotopy
took 149.126 s on a Silicon Graphics R5000 O2 workstation
with 256 Mb of memory. For other spin systems that we have
examined, homotopy is at least twice as fast as matrix diago-
nalization.

CONCLUDING REMARKS

Homotopy has been implemented within the XSophe/Sophe
electron paramagnetic resonance computer simulation suite,
wherein it is used to find the eigenvalues and associated eig-
envectors of the special class of matrices generated in the
computer simulation of magnetic resonance spectra. In partic-
ular, by directly tracing the eigenfunctions in parameter space
it can:

TABLE 2
Comparison of Homotopy and Matrix Diagonalization Methods

Levels
Relative accuracy

(RA)
Total Sophe
points (n)

Erroneous
data pointsa

Unmatched
homotopy

pointsb

2 4 1.0714403 1023 666 2 156
3 5 1.0257063 1024 666 411 255
5 6 4.1043343 1025 666 0 0

a The number of erroneous data points where the magnetic field value for
matrix diagonalization and homotopy do not agree, or where matrix diagonal-
ization found an erroneousB value.

b The number of multiple valued Sophe points calculated by homotopy for
which matrix diagonalization did not return a multiple valued point.

FIG. 4. Transition surface between levels 2 and 4 as a function ofu, f, B
for a high-spin Fe(III) complex (D 5 0.1 cm21, E/D 5 0.25,g 5 2.0, n 5
9.0 GHz). Calculated using (a) homotopy and (b) matrix diagonalization,
Sophe.

110 GATES ET AL.



—trace a given transition as a function of orientation (u 5
03 180°,f 5 03 180°) in the presence of energy level
anti-crossing,

—trace looping transitions, and
—perform the simulations in frequency space.

Since this method is also theoretically less expensive than
matrix diagonalization, when combined with the Sophe inter-
polation scheme it should result in significant reductions in
computational time for the simulation of EPR spectra without
sacrificing accuracy. Homotopy may also be used in conjunc-
tion with other partition schemes, for example, the “Apple-
peel” (3), “Igloo” (18), “Spiral” (19), and “Triangular” (34)
methods and perturbation theory.

Consequently, in conjunction with the Sophe partition
scheme homotopy improves the quality of simulated spectra,
allows the analysis of more complicated EPR spectra from
complex spin systems, and reduces the computational time
compared with matrix diagonalization. The method can also be
extended to the simulation of field dependent CW-ENDOR,
ESEEM, pulsed ENDOR, solid state NMR, and nuclear quad-
rupole resonance spectra.
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