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Multidimensional homotopy provides an efficient method for  [1]) for the isolated centresA;) and the interaction Hamilto-
accurately tracing energy Ieve_ls and hence Fransitior!s_in the pres-  nian (%A‘j) which accounts for the isotropic exchange, anti
ence of energy level anticrossings and looping transitions. Herein  symmetric exchange, and the anisotropic spin—spin (dipole

we describe the application and implementation of homotopy to dipole coupling) interactions between a pair of paramagnet
the analysis of continuous wave electron paramagnetic resonance centres 2-5

spectra. The method can also be applied to electron nuclear double

resonance, electron spin echo envelope modulation, solid-state

nuclear magnetic resonance, and nuclear quadrupole resonance N N

spectra. © 1998 Academic P| —
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Ha, = InSa S, T daSa, X Sp + Sa s Do Sa- [2]

INTRODUCTION ) ) , )
Computer simulation of the experimental randomly ori-

Multifrequency electron paramagnetic resonance (EPRNtated or single crystal EPR spectra from isolated or col
spectroscopyl-3) is a powerful tool for characterizing para-Pled paramagnetic centres is often the only means availak
magnetic molecules or centres within molecules that contd®f accurately extracting the spin Hamiltonian parameter
one or more unpaired electrons. EPR spectra are often compiestuired for the determination of structural informatidh-(
and are interpreted with the aid of a spin Hamiltonian. For &) Computer simulation of randomly orientated EPR spec
isolated paramagnetic centr&) a general spin Hamiltonian is tra is performed in frequency space through the integratia

(1-3 39
#H,r=S-D-S+BB-g-S+S-A-l M M x (=
+I-Q-|—'y|'(1—0')'B, [1] S(B,VC)ZEZCJ f
i=0j=i+1 J .o J .0

where S and | are the electron and nuclear spin operators
respectivelyD the zero field splitting tensog and A are the
electron Zeeman and hyperfine coupling matrices, respectively,
Q is the quadrupole tensoy,the nuclear gyromagnetic ratio,
the chemical shift tensof3 the Bohr magneton, anB the Where S(B, v.) denotes the spectral intensityy;|* is the
applied magnetic field. transition probability,v. the microwave frequencyy(B) the
Additional hyperfine, quadrupole, and nuclear Zeeman if¢sonant frequencys, the spectral linewidthf [v. — vo(B),
teractions will be required when superhyperfine splitting &.] @ spectral lineshape function which normally takes the
resolved in the experimental EPR spectrum. When two or mdRsm of either Gaussian or Lorentzian, a@ca constant which
paramagnetic centresA(, i = 1, ..., N) interact, the EPR incorporates various experimental parameters. The summati
spectrum is described by a total spin Hamiltonidii () is performed over all the transitions, () contributing to the

which is the sum of the individual spin Hamiltoniar# {, Eq. SPectrum and the integration is performed over half of the un
' sphere (for ions possessing triclinic symmetry), a consequen

1 To whom correspondence should be addressed. of time reversal symmetryl(3). For paramagnetic centres

X || [ve — vo(B), o,]Jdcosh do, [3]
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COMPUTER SIMULATION OF SPECTRA 105

with symmetries higher than triclinic only one or two octantfor partitioning the unit sphere and the extremely efficien
are required. global cubic spline and local linear interpolation scheme

Unlike most other spectroscopic techniques (nuclear magy reducing the number of and ¢ orientations 23-25.
netic resonance, infrared, and electronic absorption spectrdghile a 26-fold reduction in computational time can be
copy) which are frequency swept, EPR is a field-swept techehieved in the simulation of an orthorhombic Cr(lll) EPR
nigue. In other words, the resonance condition/= E;(B,.d spectrum with Sophe, even larger reductions can be o
— Ej(Bed; WhereE; andE; are the energies (eigenvalues) ofained with larger spin systems. The Sophe computer sin
the two spin states (eigenvectors) involved in the transition] idation software package allows the simulation of randoml
achieved by sweeping the magnetic field (varyiBg, and orientated powder spectra described by either Eq. [1] or Eq
hencek; andE;). [1] and [2] for all spin systems (i.eS, = % orS, = % Sy =

The methods used for determiniri§}.. in the computer %: i,j=1,...,N;j #1i)(23-25 and can easily be extended
simulation of randomly oriented EPR spectra can be broadly other types of randomly orientated powder spectra i
classified into two categories, namely perturbation and matrixagnetic resonance.
diagonalization methods. In the Sophe method2B, 29, the B, are calculated by

In perturbation methods the energies of the spin statesmatrix diagonalization only at a number of selected orien
a function of the field strength B are obtained from analyttations which constitute the vertices of a given Sophe gric
cal expressions. This approach is computationally inexpensiigpically 190 orientations/vertices for orthorhombic sym-
but is limited largely to systems in which a dominant intermetry). For all other orientations (normally in the thou-
action exists and all the other interactions can be treatednds)B . and|pbij|2 are obtained through the Sophe inter-
approximately as perturbations. This approach has been prelation scheme. Such an approach has been demonstra
dominantly used to extract spin Hamiltonian parametets be highly successful for simulating complicated EPF
from EPR spectra of isolated paramagnetic centres whishectra 26-28§.
contain a single unpaired electrors (= %) (2,3,10-1% However, all computer simulation programs, including
and exchange or dipole—dipole coupled binuclear centr8sphe, that employ matrix diagonalization, are not capable
(Sa, = Sp, = %) (2-95. performing the following functions satisfactorily:

The second category involves matrix diagonalization and
must be employed for calculating the eigenvalues and eig
vectors when perturbation theory breaks down (i.e., when t
or more interactions have comparable energies). While th
eigenvalues are used to calculBtg, the eigenvectors are use
to calculate the transition probabilify;;|* (3). s

In theory, this approach is general and can be applied . . . .
any spin system of choice. However, the numerical integra—(g) FC’e:forlm[ng thfe ﬁ'm“'a“‘?’?s n fret?ut?Pcy Spagk (
tion given in Eq. [3] can be very time-consuming as the (d) Calculation of the transition probability across a reso
process of searching fd@,.for a given transition involves nance.
substantial computation and this searching process has to b&hus, although the complete matrix diagonalization ap
repeated for every transition and for every orientation of thgoach is far superior for general systems than perturbatic
magnetic field. This often involves a very large numbenethods, both methods are incapable of tracing the eigenpa
(100,000 or more) of matrix diagonalizations and memoryom one field position to another nearby position when ther
requirements can be substantial if the spin space becoraes holes in a transition surface, anti-level crossings, or loopir
large. Currently the most efficient algorithms for Hermitiamransitions. Herein we describe the application and impleme
matrix diagonalization are cubic proces@@\®) (whereN tation of homotopy to the computer simulation of magnetic
is the order of the matrix)1(7). As a consequence computeresonance spectra which allows the difficulties described abo
simulation programs employing this approach are performesl be overcome.
in field space with symmetric lineshapes with a constant
transition probability across a given resonance. Examples of HOMOTOPY
computer simulation software which use this approach to
simulate spectra from isolated paramagnetic centres includén other fields, the “homotopy” method, also known as the
QPOW (@8), EPR.FOR 19, MAGRES 0,21, and continuation or embedding method, has been shown to |
MSPEN/MSGRA 22). efficient and useful for tracing eigenvalues and eigenvectors

The “Sophe” method recently developed by Wang aral known diagonalization to an unknown diagonalizatior
Hanson features matrix diagonalization, a segmentati@0, 3. It has also been used to compute the complete eige
method employing second order eigenfield perturbation thdecomposition of symmetric tridiagonal matric89(31). Ho-
ory allowing B, to be determined quickly, a new schemenotopy works by constructing a function which connect:

(a) Tracing a given transition as a function of orientation ir
&v%e presence of energy level crossings apd anti—c.rossmlljs (

(b) Tracing of surfacesB.cas a function of orientation)
Fﬁich contain looping transition29). Looping transitions
are transitions that fold back on themselves in orientation:
gace.
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through smooth curves the eigenvalues and eigenvectors of one E/(6,, ¢o, Bo) = $i(0o, do, Bo)"(H(00, bo, Bo)
matrix to another. A similar method based on nonlinear least

squares was used by Misra and VasilopouR (o trace the ~ H(6y, b1, B))Yi(6o, do, Bo). (5]
eigenvalues and hence the resonant field positions in single o ] ) )
crystal EPR spectra. his equation is equivalent to the Rayleigh quotied$) (of the

The homotopy method can be used to trace the eigenvﬁiﬁe“’;nce qf the field dependent Hamiltonian at the two point:
ues and eigenvectors (termed an eigenpair) for a given sy using this formula and varying onlyand¢ we can find an
system as a function of orientation and magnetic fiel@PProximate spatial derivative of the eigenvalue, and thus tf
Consequently, given a fixed microwave quantumJhtran- chgngg in spin state due t.o spatial varlat!ons. Having found tt
sitions between a pair of eigenvectors can also be traceddgéivatives for the two eigenvalues of interest, we can the
a function of orientation and magnetic field, producing gStimate the eigenvalues at the new orientatiyn ¢,). With -
complete eigensurface of eigenvalues and associated eigffse estimates of the new eigenvalues we can find the eig
vectors. This enables homotopy to uniquely follow the trari¥ectors by solving the equation
sition surface in the vicinity of anti-level crossings and
looping transitions. Since the eigenvalues and eigenvectors(H(61, ¢1, Bo) — Ei(01, 1, Bo)) (61, d1, Bo) = 0. [6]
are known as a function of orientation and magnetic field,
the simulation of magnetic resonance spectra and in particAWe can then get a better estimate of each eigenvalue fro
ular continuous wave EPR spectra can be correctly pehe Rayleigh quotient3@) of the new eigenvector,
formed in frequency space.

The initial step in homotopy is the construction of a spin E(6,, ¢4, By)

Hamiltonian matrix H) based on an appropriate spin Hamil-

tonian (Eqg. [1] or Egs. [1] and [2]). This results in a matrix = $i(01, d1, Bo)'H(01, s, Bo)yi(01, b1, Bo)  [7]
function in three variables, the Euler angleésind ¢, which

reflect the angular dependence of the transitions, and the magd then calculate a new eigenvector corresponding to this ne
netic fieldB. For ease in further calculations this Hamiltoniagigenvalue. Thus we iterate between estimates of the eige
matrix is split into field independemt;,q,and field dependent value and the eigenvector until convergence (defined by tt
Haep (6, &, B) components. The eigenvalueB)(and eigen- tolerance parametén, = 1.0 X 10* X epsilonx |E|), or the
vectors () at an initial orientation, for exampl®, = ¢ = 0°, maximum number of iterations, typically 5) is exceeded.
are calculated from these matrices by solving the eigenvalggsilon is defined as the smallest difference between tw
problem @ty = Ey). double precision numbers and for a Silicon Graphics R5000 C

The second step is to use an appropriate search algorithnv@kstation with 32 bit libraries equals 2.22044610*°. If
locate the resonant field positiofg. using the resonancethe maximum number of iterations is exceeded for eithe
condition eigenvalue, the total spatial distance is halved, and this step
repeated.

After having independently traced the two eigenpairs o
interest from one spatial locatior®,(¢) to another, the next
step, step four, is to find the resonant field positions at the ne
for an initial fixed set of Euler angles and a constant microwagéientation. This is accomplished by using another variation
quantum. The result of this search algorithm is two eigenpaitse Homotopy algorithm. From Egs. [4] and [5] wheBeis
corresponding to each transition, and a resonant field strenggéiied andd and¢ are held constant, we can find the derivative
B,.s An example of such a search algorithm is describeaf the functionF at (6,, ¢, B)
below. The probability of observing a transition between this
pair of eigenvectors can be calculated by applying a mathe- F& = E{(61, ¢4, Bo) — Ej(61, ¢4, By). [8]
matical formula to the eigenvectors.

The third step is to keep the magnetic field strength constagfe can now update the correction to the resonant field positic
and calculate the resonant energy difference between the g’ge-s
envalues based strictly on changes to the Euler angles. In

F=AE= hVC = Ei(ela d)ly Bres) - Ej(ela d)lr Bres) [4]

particular, the energy levels are traced from one fixed position AB = —F/F}
(6o, ¢p) to another fixed positioné(, ¢,) which involves a
change in one or both of the Euler angles. From the theory B, = By, + AB. [

developed for the homotopy method we know that for an

energy levelE(6,, ¢, By) with a corresponding eigenvectorUsing this new value foB we can update the energi€s,and
1(00, do, Bo) (31), the derivative of the eigenvalug with  E; with the Rayleigh Quotient method and check the resonan
respect to the homotopy variableis given by condition (Eq. [4]). If the condition is not satisfied, we continue
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to take new stepaB until Eq. [4] is satisfied, or until the
maximum number of steps{, typically 7) is exceeded. Upon

107

If Rayleigh Quotient Iteration converged ald < n,

If Fg — hy, < &,

convergence we return to step three and take a new spatial step. Bs = B
In general, this steAB is confined to be within some tolerance Exit

range 6, = 1.0 X 10° X epsilon= 2.220446x 10 °), if this

End if

is not achieved, or if too many steps are required, then the Else
algorithm goes back to step three halving the total spatial A6 = A6/2

distance. This method will allow the calculation of the transi- 0=6,+ A6
tion probability (from the eigenvectors) across a given transi-  A¢ = Ad/2
tion line and in turn enables simulations to be performed in ¢ = o + Ad
frequency space. Go to Step 3

The implementation of homotopy to the analysis of ran- End if

domly orientated EPR spectra is described below.

End do

End
Set up Hamiltonian matrix defined by Egs. [1] and [2] (Step 1)
The Rayleigh quotient iteration methd®3| is used to determine

both the eigenvalue and the eigenvector of a symmetric matrix

calculate the eigenvectors and eigenvalues b, by solv-
ing Xy = Eys
Locate resonant field positions B (Step 2)
Trace Eigenpath frond,,¢g to 61,6, (Step 3)
Set the tolerancé,, the maximum iteration number;,M6,

and A¢
6 =06, + A6
¢ = ¢o + Ad

Do
Use E@,,¢0,Bo) and E (6,,¢0,B,) to predict EQ,¢,B,) for
the eigenvectorgy; and i
Call Rayleigh Quotient Iteration (H, B, ¢, By), (0, ¢,
Bo), Ny, 1)
Call Rayleigh Quotient Iteration (H, &, ¢, By), ¥;(6, ¢,
Bo), Ny, 87)
If Rayleigh Quotient Iteration converged
0, =10
¢, = ¢
Exit
Else
A6 = A6/2
6 =16, + A6
Adp = Adl2
b= o+ Ad
End if
While Rayleigh Quotient has not converged
End
Find the resonant field position B (Step 4)
Set the tolerancé, and the maximum iteration number,. n
B = By
Doi
Fg = Ei(6y, ¢4, B) — Ej(ela ¢4, B)
Fs = E(0,, ¢1, B) — Ej/(eli ¢1, B)
AB = —Fg/Fg
B=B+ AB
Call Rayleigh Quotient Iteration (H,B,, ¢4, B)5(604, ¢4,
B), M, 8)
Call Rayleigh Quotient iteration (H, 81, ¢4, B);(01, ¢4,
B), M, 85)

Rayleigh Quotient Iteration(H, &, n, 8)
Yo = Wil
Mo = E
Fori=0,...,n—1
yi = (H— wh) ™
iv1 = Y/l
Miv1 = l/fiT+1H¢i+1
If (ki1 — will < 8) then
A= Wit
=i
Return success
Endif
End for loop

TABLE 1

Complexity Analyses for Matrix Diagonalization and Homotopy

Matrix diagonalization

Procedure

Computation time

Tri-diagonalizeH matrix.

DiagonalizeH matrix with an iterative QR methodl.

Repeat diagonalization 200 times for each
orientation 0, ¢).

Total computation time fom?/2 orientations.

Homotopy

2/3N3
8-10N3
~2000N3

~2000N® m?/2

Tri-diagonalizeH matrix.

Rayleigh Quotient Iteratiof.

Find ¥ from the originalH matrix.

Repeat~4 times to trace transition surface from one
orientation to another.

This calculation is repeated far allowed transitions.

Total computation time fom?/2 angular
orientations.

2/3N3
15-20N
2N2
~8/3N3

~8/3d N®
~8/3d N3 m?/2

@ Determine allg, V¥ of tri-diagonalH matrix.
b Using the tri-diagonaH matrix.
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FIG. 1. An energy level diagram for a high-spin Fe(lll) compléx € 0.1 cni', E/D = 0.25,g = 2.0, » = 9.0 GHz) atf = 0° and¢ = 0°. Energy
level numbers one through six correspond to levels in increasing energy.

Return failure The following modifications to homotopy described hereir
End provide a solution to these problems. In step three, homotoy
Application of homotopy to a continuously varying transiiattemIOtS to trace the. eigenvalues from one angul{:lr ppsmon

another. If homotopy is unsuccessful, then the spatial distance

tion surface (for example, Fig. 2) is fairly straight forward; i o
Given a single point on the surface, a method could jugfllved and the step is repeated. If the spatial distance falls bel

produce a line of eigenpair points along thexis, and then a certain level, then there are two possibilities— either the edge
from every point on the line sweep out along theaxis. fche sgrface has be-e.n. reached or a turn h.as been found.
However, such an algorithm will not find the complete surfadBvestigate the possibility of a turn, homotopy is used to trace tf
if looping transitions are present (Fig. 3). Using this fund=igenvalues in the reverse spatial direction. There is then tl
mental method, there are three possible cases when the surfdeglem of whether a turn is being followed, or whether the
will not be completed. The first two cases involve the compaRreviously found eigenpairs are being rediscovered. To enst
ison between two adjacent lines (i.e., two lines along ¢he that a turn is indeed being followed the adjustmentBadre
axis). If one line turns and the other doesn't, or if there is @hecked. In general whe is adjustedAB is confined to be
great difference ifB values between adjacent points, then pawithin plus or minus a given tolerance, otherwise an error i
of the surface could be missing, for example, Fig. 4b. The thipoduced. In the vicinity of a possible turd\B is restricted
case is a surface that has a fairly complicated boundary dndher. If B was increasing prior to the possible turn, tHgis
does not exist for the entire spatial dimension field. confined to increase after the turnBfwas decreasing before the
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(a) With the microwave quantumy(= 9.0 GHz) set to be slightly
smaller than the zero-field splittings, multiple transitions can oc
cur between a given pair of energy levels (Fig. 1). For exampl
between levels 2 and 4 (numbered in increasing energy), thr
transitions aB,. = 35.25, 1892.0, and 2355.0 mT are detectec

The power of homotopy in comparison to matrix diagonal
ization is clearly demonstrated in Figs. 2, 3, and 4 whicl
compare transition surfaces from the two methods for partic
ular transitions arising from a8 = g spin system. Figure 2

o  Shows the transition surfaces between levels 5 and 6. Tl
homotopy surface (Fig. 2a) shows exactly the same structure

Field Strength

8000 ~
7000
6000
5000
4000
3000
2000
1000

P calculated by matrix diagonalization (Fig. 2b). This transitior
0 80 5—~"0 surface varies continuously as a function of the Euler angle
and the magnetic fiel&.

Table 2 gives the results of comparisons between homoto
and the matrix diagonalization, where the following informa-
tion is given in the columns:

(b) (1) the transition levels,
Field Strength (a)

8000 ~

7000 Field Strength

a000

4000 3000

3000
2000
1000

4]

2500
2000
1500
1000

500

FIG. 2. Transition surface between levels 5 and 6 as a functiah ¢f and 3/ .5 o
B for a high-spin Fe(lll) complext = 0.1 cm %, E/D = 0.25,g = 2.0,» = 9.0
GHz). Calculated using (a) homotopy and (b) matrix diagonalization, Sophe.

turn, then it will decrease after the turn. If homotopy continues to b
find eigenvalues with these restrictions imposed then a turn oc( )
curred, otherwise the edge of the surface was found.

A comparison of the complexity analyses for matrix diagonalizaField Strength
tion (~1000N2 n) and homotopy-{¢4/3d N n¥), Table 1, reveals
that providing the number of transitiord {s less than 75, homotopy ~ ***°|
will be computationally more efficient than matrix diagonalization.  1s00
1000 w

APPLICATION OF HOMOTOPY TO AN S = g
SPIN SYSTEM

500

Homotopy has been tested for a high-spin Fe(lll) system
S=2(D=0.1cm* E/D = 0.25,g = 2.0) forwhich the
second order fine structure spin Hamiltonian is

FIG. 3. Transition surface between levels 3 and 5 as a functio6, df,
andB for a high-spin Fe(Ill) complex® = 0.1 cm %, E/D = 0.25,9 = 2.0,
v = 9.0 GHz). Calculated using (a) homotopy and (b) matrix diagonalization

#=9gpB-S+ D[Sf—;S(S-I— 1)] + E(S2— 852,) [10] sohpe.
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(a) between the two methods is very small 4.1043340 °. The
transition surface from level 3 to level 5 shown in Fig. 3 is ar
example of a looping transition in which the transition surfac
folds back on itself. While the surface is fully defined by
3500 - homotopy (Fig. 3a), the surface calculated by matrix diagona
3000 F ST ization is incomplete and erroneous since there are no tran
2000 tions b(_atween Ievel_s 3 and 5 when> 40° (Fig. 3b). I_n Fig. 4
1000 | an anti-level crossing between levels 2 and 4 is graphe
<L Homotopy (Fig. 4a) resolves the complete structure whil
matrix diagonalization completes only the mostly continuou
lower transition (Fig. 4b). In this case matrix diagonalizatior
may have found multiple points. Matrix diagonalization may
have discarded some points in completing the surface, as it
unable to make a connection between the multivalued point
Note that the unmatched homotopy points indicate structu
not revealed with matrix diagonalization, while the points
where matrix diagonalization and homotopy do not agree ir

Field Strength

(b) dicate erroneous points calculated by matrix diagonalization
Randomly orientated spectra calculated with homotopy ar
Field Strength matrix diagonalization are shown in Figs. 5a and 5b, respe

tively. Clearly there is excellent agreement between the tw
methods for this spin system. For the high-spin Fe(lll) syster
described above withl = 100 (the number ob orientations

in the Sophe grid) and 100 field intervals for matrix diagonal
ization, matrix diagonalization took 535.661 s while homotopy
took 149.126 s on a Silicon Graphics R5000 O2 workstatio
with 256 Mb of memory. For other spin systems that we hav
examined, homotopy is at least twice as fast as matrix diag
nalization.

3000
2500
2000
1500
1000
500
o]

FIG. 4. Transition surface between levels 2 and 4 as a functiah) éf B CONCLUDING REMARKS

for a high-spin Fe(lll) complexl = 0.1 cmi *, E/D = 0.25,g = 2.0,v = . L
9.0 GHz). Calculated using (a) homotopy and (b) matrix diagonalization, HOmotopy has been implemented within the XSophe/Sopt
Sophe. electron paramagnetic resonance computer simulation sui
wherein it is used to find the eigenvalues and associated e
envectors of the special class of matrices generated in t
(2) the relative differenceRA) between the Sophe pointscomputer simulation of magnetic resonance spectra. In parti

calculated using the two methods, ular, by directly tracing the eigenfunctions in parameter spac
it can:
RA: 1/n* z |BMatrix Diagonalization BHomotop)L ' [11]
BHomotopy TABLE 2
(3) the total number of Sophe points computed, Comparison of Homotopy and Matrix Diagonalization Methods

(4) the number of erroneous data points where the magnetic

field value for matrix diagonalization and homotopy do not Unmatched

Relative accuracy Total Sophe Erroneous  homotopy

agree, or where matrix diagonalization found an errond®us eyels (RA) points )  data point8 point

value, and
(5) the number of multiple-valued Sophe points calculated 4 ~ 1.071440<10°° 666 2 156
1.025706x 1074 666 411 255

by homotopy for which the matrix diagonalization routine may°’ 5 -
: . 5 6  4.104334x 10 666 0 0

have calculated multiple points but Sophe was unable to com-

plete the surface. Consequently only the lowest valued pointthe number of erroneous data points where the magnetic field value f

has been reported. matrix diagonalization and homotopy do not agree, or where matrix diagona
. ization found an erroneolB value.
Clearly, homotopy reproduces the surface obtained by mas the number of multiple valued Sophe points calculated by homotopy fc
trix diagonalization between levels 5 and 6 as the relative ernatich matrix diagonalization did not return a multiple valued point.
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(a)

(b)

0 1000

T T T S =
4000 5000 6000 7000 8000

Field [G]

T T
2000 3000

FIG. 5. Randomly orientated spectra for a high-spin Fe(lll) complex Wite= 0.1 cm %, E/D = 0.25,g = 2.0, andv = 9.0 GHz. Calculated with (a)
homotopy and (b) matrix diagonalization.
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